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Abstract
When estimating field-scale average soil moisture from sensors measuring at fixed

positions, spatial variability in soil moisture leads to “measurement errors” of the

spatial mean, which may persist over time due to persistent soil moisture patterns

resulting in autocorrelated measurement errors. The uncertainty of parameters that

are derived from such measurements may be underestimated when they are assumed

to be independent. Temporal autocorrelation models assume stationary random

errors, but such error models are not necessarily applicable to soil moisture mea-

surements. As an alternative, we propose a mechanistic error model that is based on

the spatial variability of the water retention curve and assumes a uniform water poten-

tial. We tested whether spatial soil moisture variability and its temporal covariance

could be predicted based on (1) mean soil moisture, (2) water retention variability,

and (3) (co)variances of the van Genuchten parameters using a first-order expansion

of the retention curve. The proposed models were tested in a numerical and a field

experiment. For the field experiment, in situ sensor measurements and water retention

curves were obtained in a field plot. Both experiments showed that water retention

variability under a uniform water potential is a good predictor for spatial soil moisture

variability, and that soil moisture errors are strongly correlated in time and neglect-

ing them would be an incorrect assumption. The temporal error covariance could be

predicted as a function of the mean moisture contents at two observation times. Fur-

ther research is required to assess the impact of these temporal correlations on soil

moisture predictions.

Abbreviations: RMSE, root-mean-square error; rRMSE, relative root-mean-square error; vG, van Genuchten.
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1 INTRODUCTION

With the development of cheap and autonomous soil monitor-
ing sensors, real-time soil moisture data can play an important
role in irrigation scheduling. The use of this information, how-
ever, remains a challenge mainly because the local sensor
measurement may differ from the average soil moisture due to
soil heterogeneity across the field. Even though the local mea-
surement may correctly represent the local soil water content,
in the context of irrigation scheduling that is based on aver-
aged or mean soil moisture contents, its deviation from the
average or mean water content can be interpreted as a “mea-
surement error.” In addition, when measuring soil moisture
with sensors at fixed positions, a deviation from the mean soil
moisture in the root zone may persist over time resulting in
autocorrelated measurement errors. The uncertainty of vari-
ables or parameters that are derived from such time series may
be underestimated if these measurement errors are interpreted
as independent errors.

Soil moisture measurements are used to calibrate models,
for example, soil water balance models, that simulate soil
moisture (Greenwood et al., 2010), which is a key variable
for plant growth but also for microbial activity and biogeo-
chemical cycles. These models typically simulate vertical soil
moisture profiles or average moisture contents in soil layers.
The simulated moisture contents therefore represent field-
scale average moisture contents at different depths or in soil
layers. Bayesian methods can be used to parameterize soil
water balance models based on soil moisture measurements,
their uncertainty, and prior information about the model
parameter distributions (Scharnagl et al., 2011, 2015). The
uncertainty of the measurements in this context refers to the
deviation of the measurements from the field-scale average
soil moisture. The deviation between model predictions and
measurements is used to calculate likelihood functions where
the weighting by the measurement uncertainty is crucial. In
theory, the uncertainty of each measurement point and the cor-
relation between all measurement errors need to be accounted
for. In practice, however, error models are used to represent
this uncertainty and correlation. The simplest model assumes
that measurement errors are uncorrelated and do not vary over
time, and that the variance of the measurement errors cor-
responds with the variance of deviations between the model
predictions and measurements. This model neglects the mea-
surement error correlation and the fact that the soil moisture
variability may vary with the mean soil moisture content.
More accurate models may consider autocorrelated errors and
a relation between the error and mean soil moisture content.
The parameters of these models, that is, hyperparameters,
may be derived from the deviation between model simula-
tions and measurements, or from measurements directly. In
this paper, we present another approach where we use a simple

Core Ideas
∙ Soil moisture is spatially variable, and spatial

variations are correlated in time.
∙ Due to spatial variability, the estimated average soil

moisture from a limited number of measurements
is uncertain.

∙ The error of the spatial mean estimated from a
limited number of sensors at fixed positions is
correlated in time.

∙ A mechanistic error modeling approach is pre-
sented based on the spatial variability of the water
retention curve.

∙ Such a model can predict measurement variability
and error covariance in time as a function of mean
soil moisture.

mechanistic model to link this error and correlation to the
spatial variability of the soil water retention curve.

Soil properties including bulk density, saturated hydraulic
conductivity, and van Genuchten (vG) water retention curve
parameters (van Genuchten, 1980) are subjected to both
spatial and temporal variations, which may lead to spatial
and temporal variability of soil moisture in a field. Hence,
accounting for the spatial distribution of these soil proper-
ties is crucial for irrigation management purposes (Feki et al.,
2018). In addition to the heterogeneity of soil physical and
hydraulic properties, field-scale soil moisture variability can
result from a number of other reasons including variations in
crop growth (canopy cover and root water uptake), variations
in soil management (tillage, nutrients) and irrigation (nonuni-
form drip or overhead application), nonuniform precipitation,
lateral water redistribution due to topography, and variations
in microclimate or evaporative demand due to variations in
aspect and slope (Wilson et al., 2004). Although small-scale
heterogeneity was found to have a minor impact on root water
uptake and long-term field-scale soil water balance compu-
tations (Schlüter et al., 2013), soil heterogeneity might still
impact interpretation of soil monitoring such as soil moisture
sensor measurements, as well as the short-term and local soil
water balance.

Soil moisture variability has been widely studied in rela-
tion to mean soil moisture (Bell et al., 1980; Famiglietti et al.,
2008; Irmak et al., 2022; Rosenbaum et al., 2012), and in rela-
tion to the spatially variable soil properties, vegetation cover,
and topography as the immediate causes of this soil mois-
ture variability (Albertson & Montaldo, 2003; Lawrence &
Hornberger, 2007; Manns et al., 2014; Pan & Peters-Lidard,
2008; Schlüter et al., 2013; Teuling & Troch, 2005; Vereecken
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HENDRICKX ET AL. 3 of 20Vadose Zone Journal

et al., 2007). Teuling and Troch (2005) successfully modeled
soil moisture variability in a heterogeneous soil at field scale
up to small catchment scale by accounting for variability in
the saturated hydraulic conductivity, maximum land cover,
porosity, and pore size distribution. This model was further
developed by Lawrence and Hornberger (2007), who found
that variability at low, mid-range, and high mean soil moisture
levels is mainly determined by the wilting point, (unsaturated)
hydraulic conductivity, and the porosity, respectively.

The uncertainty of repeated soil moisture measurements
in a field is determined not only by soil moisture variabil-
ity itself, but also by the persistency of local soil moisture
measurement “errors” over time, which manifest themselves
as a consistent under- or overprediction of the spatial mean
or average soil moisture. The statistical measure of this error
persistency is the autocorrelation. The default assumption,
however, is that measurement errors are not correlated with
each other, which generally results in an underestimation
of the uncertainty of predictions that are based on repeated
measurements with autocorrelated errors over time. Correla-
tion removal strategies such as autoregressive models (AR,
AR(I)MA) assume that measurement errors are temporally
stationary random processes, that is, the covariance of errors
depends only on the time lag between the measurements, and
could be used when spatial soil moisture variations are a result
of a spatially variable but temporally stationary random pro-
cess such as rainfall. However, temporal correlations of local
soil moisture deviations that are due to spatial variations in
soil properties, vegetation cover, and topography are not sta-
tionary in time but process based (Doherty & Welter, 2010).
This is because spatial variation in the properties and pro-
cesses that generate this variability is persistent over time
so that deviations in soil moisture at a certain location and
time from the overall mean will have an imprint that does not
vanish over time. Other ways to describe autocorrelation are
required for soil moisture time series that are influenced by
such temporally invariant but spatially variable properties and
processes.

In this paper, we focus on how to model soil moisture
variability and covariance in fields with spatially variable
soil properties. Since we focus on irrigated and intensively
managed crops, we assume that the vegetation cover is quite
uniform across the field and that the considered fields are
flat so that we may neglect the effect of topography and vari-
able vegetation on soil moisture variability. Even though water
retention curve variability has been described and discussed
by several researchers (Cameron, 1978; Canone et al., 2008;
Dohnal et al., 2006; Montzka et al., 2017; Shouse et al., 1995),
this knowledge is rarely used to predict soil moisture variabil-
ity, let alone soil moisture error correlation. A widely applied
technique to represent retention curve variability introduced
by Miller and Miller (1956) is the scaling technique that scales
local retention curves to a reference curve, and it is useful in

gaining insight into soil moisture variability in heterogeneous
soils (Montzka et al., 2017; Sadeghi et al., 2016). Qu et al.
(2015) provide another perspective on soil moisture variabil-
ity and its relation with water retention variability, as they
derived a first-order approximation of the vG model to predict
soil moisture variability as a function of mean soil moisture
based on the vG model parameters and their variability.

We propose a mechanistic error model that is based on the
variability of the soil water retention curve and assumes a
uniform soil water potential in the field (i.e., uniform in the
horizontal direction, but variable in depth and time). We tested
whether soil moisture variability and autocorrelation could be
predicted as a function of the mean soil moisture based on (1)
the variability of the soil water retention curves or (2) infor-
mation on the variability and covariance of the vG parameters
using a first-order expansion of the retention curve (Qu et al.,
2015). The approaches and the assumptions on which these
methods are based are described in the first section of this
paper (Theoretical framework). Then, these methods were
applied and validated both in a numerical and a field exper-
iment. In the numerical experiment, the assumptions about
a uniform soil water potential and spatial variability in soil
moisture that is generated only by spatial variability in the
soil hydraulic properties were tested using a virtual dataset
of soil moisture measurements derived from water flow sim-
ulations in a heterogeneous field with a variability in soil
hydraulic properties and root water uptake. The advantage of
this approach is that the soil variability, based on a Miller–
Miller scaling (Miller & Miller 1956), is known so that we
can verify these assumptions. Second, the model was evalu-
ated under real field conditions. For this evaluation, in situ soil
moisture sensor measurements (TEROS 10; METER Group
Inc.) as well as soil water retention curves were obtained at
different locations in a field plot.

2 THEORETICAL FRAMEWORK: SOIL
MOISTURE VARIABILITY AND
“MEASUREMENT ERROR”
AUTOCOVARIANCE

Sensor measurements and their errors, that is, their devia-
tions from the (unknown) field-averaged soil moisture content
at a certain depth and time 𝑖 (𝐸𝑖 = 𝜃𝑖 − �̄�𝑖), are autocorre-
lated in time as each sensor measures soil moisture at a
fixed position. In this study, the covariance between two
“measurement errors” at the same location at two different
moments is examined. Two measurements at two different
locations are assumed to be independent as long as they are
sufficiently far from each other (i.e., we do not consider spa-
tial autocovariance and assume that the distance is larger
than the horizontal correlation length [𝜆𝑥] of the soil prop-
erties). Different approaches are considered to describe and
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T A B L E 1 Overview of error models to estimate the standard deviation (STDEV) and autocovariance (ACOV) of soil moisture measurements.

Model Meaning Equation
T-NS ACOV Nonstationary temporal autocovariance derived from observations Equation 1

T-S ACOV Stationary temporal autocovariance derived from observations Equation 2

SM ACOV Soil moisture-based autocovariance derived from observations Equation 3

STDEV Soil moisture-based standard deviation derived from observations

RC ACOV Autocovariance model derived from the water retention curves Equation 4

STDEV Standard deviation derived from the water retention curves

RC-FO ACOV Autocovariance model derived from a first-order expansion of the water retention
curves

Equation 5

STDEV Standard deviation derived from a first-order expansion of the water retention curves

RC-FO-uncorr ACOV Autocovariance model derived from a first-order expansion of the water retention
curves assuming uncorrelated retention curve parameters

Equation 6

STDEV Standard deviation derived from a first-order expansion of the water retention curves
assuming uncorrelated retention curve parameters

predict measurement uncertainty and covariance, of which an
overview is given in Table 1. To simplify the notation, the
covariates will not be shown in the following but only the
variables that are used to predict the covariance.

First, standard deviations and autocovariances are derived
directly from observations. For the autocovariances, these
include the nonstationary temporal autocovariance (T-NS;
Equation 1) and the stationary temporal autocovariance (T-
S; Equation 2). The latter corresponds to the classic temporal
covariance computation, that is, the covariance only depends
on the time interval between the measurements. The non-
stationary temporal autocovariance (T-NS) will serve as a
reference for the stationary temporal autocovariance model
(T-S), both of which are expressed as a function of time.

Additionally, a soil moisture-based autocovariance (SM
model; Equation 3) is computed directly from observations.
Instead of calculating the autocovariance of measurements at
two different time points, the autocovariance is calculated for
pairs of measurements that are observed at a certain pair of
mean water contents. In this approach, it is assumed that the
autocovariance between a pair of measurements is the same
when the pair of mean water contents is the same, irrespective
of the times at which the measurements are carried out. When
longer time series of moisture contents are available and the
time course of the mean soil moisture content crosses several
times the same moisture content level, the degrees of freedom
of a covariance model that uses mean soil water contents as
independent variables is considerably reduced compared with
a nonstationary temporal covariance model. Standard devia-
tions are also calculated directly based on the observations as
a function of mean soil moisture using the SM model. These
standard deviations and autocovariances based on mean soil
moisture will serve as the reference for the modeled stan-
dard deviations and autocovariances that are derived from the

spatial variation of the soil moisture retention curve (RC,
RC-FO, RC-FO-uncorr).

Next, standard deviations and autocovariances are esti-
mated from fitted vG water retention curves. It is assumed
that the water pressure heads are spatially uniform at a cer-
tain depth in the field. Based on this assumption, standard
deviations and autocovariances of soil moisture are derived
from the spatial variability of the vG water retention curves
(RC; Equation 4), or from the variance and covariance of
the spatially variable vG water retention parameters using a
first-order expansion of the vG water retention function. Two
first-order error models are considered: one that considers cor-
relations between vG parameters (RC-FO; Equation 5) and
one that assumes uncorrelated parameters (RC-FO-uncorr;
Equation 6).

2.1 Soil moisture measurement
autocovariance

2.1.1 Temporal autocovariance

The nonstationary temporal covariance (T-NS) between mea-
surement errors at time 𝑡𝑖 and 𝑡𝑗 is defined as follows:

cov
(
𝑡𝑖, 𝑡𝑗

)
= 1
𝑛 − 1

𝑛∑
𝑘=1

(
θm

(
𝑡𝑖, 𝑘

)
− θ̄m

(
𝑡𝑖
)) (

θm
(
𝑡𝑗 , 𝑘

)

− θ̄m
(
𝑡𝑗
))
, (1)

where 𝑛 is the number of sensors, 𝜃m(𝑡𝑖, 𝑘) is the measured
soil water content at location 𝑘 and time 𝑡𝑖, and �̄�m(𝑡𝑖) repre-
sents the mean soil water content of all sensor measurements
at time 𝑡𝑖.
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HENDRICKX ET AL. 5 of 20Vadose Zone Journal

The classic temporal covariance of measurement errors
made with regular time steps Δ𝑡 can be computed for time
lag 𝑙Δ𝑡 assuming a stationary random process in time using
Equation (2). This covariance computation will be referred to
as stationary temporal autocovariance, or T-S.

cov (𝑙Δ𝑡) = 1
(𝑛 − 1) (𝑝 − 𝑙)

𝑛∑
𝑘=1

𝑝∑
𝑖=𝑙

(
θm

(
𝑡𝑖, 𝑘

)

− θ̄m
(
𝑡𝑖
)) (

θm
(
𝑡𝑖 − 𝑙Δ𝑡, 𝑘

)
− θ̄m

(
𝑡𝑖 − 𝑙Δ𝑡

))
, (2)

where 𝑛 is the number of sensors and 𝑝 is the number of mea-
surements made over time. 𝜃m(𝑡𝑖, 𝑘) and 𝜃m(𝑡𝑖 − 𝑙Δ𝑡, 𝑘) are
the soil water contents measured at location 𝑘 and at times
𝑡𝑖 and 𝑡𝑖 − 𝑙Δ𝑡, respectively, and �̄�m(𝑡𝑖) represents the mean
soil water content of all 𝑛 sensors at time 𝑡𝑖. Notice that the
assumption of stationarity implies that the covariance is only
a function of the time lag between two measurements but not
of the measurement times themselves.

2.1.2 Soil moisture-based autocovariance

As soil moisture measurement errors are expected to depend
on the soil moisture level itself, the covariance between two
measurement times 𝑡𝑖 and 𝑡𝑗 can also be calculated as a func-
tion of the measured mean soil moisture �̄�𝑖 and �̄�𝑗 (SM;
Equation 3). This covariance computation corresponds to
T-NS but expresses covariance as a function of mean soil
moisture instead of time and will serve as the reference for the
modeled autocovariances as a function of mean soil moisture
(RC, RC-FO, RC-FO-uncorr).

cov
(
θ̄𝑖, θ̄𝑗

)
= 1
𝑛 − 1

𝑛∑
𝑘=1

(
θm

(
θ̄𝑖, 𝑘

)
− θ̄𝑖

) (
θm

(
θ̄𝑗 , 𝑘

)
− θ̄𝑗

)
,

(3)
where 𝑛 is the number of sensors and 𝜃m(�̄�𝑖, 𝑘) is the soil
moisture measured by sensor 𝑘 at time 𝑡𝑖 when the mean
measured soil moisture is �̄�𝑖. Notice that here, the covariance
is a function of the mean soil moisture at two measurement
times.

As measurement data are very discontinuous, a Gaussian
filter with standard deviation 𝜎 = 10, corresponding to 10 soil
moisture steps, is applied to smooth the covariance surface
and to interpolate over a wide range of soil moisture, with a
larger standard deviation resulting in a wider and smoother
filter. Depending on the size of the bins with a maximum
width of 0.005 m3·m−3, this may correspond to a maximum
standard deviation of 0.05 m3·m−3. When this covariance
function is smoothed, pairs of measurements with very similar
pairs of mean soil water contents will have similar covari-
ance, irrespective of the time differences between the different
measurements.

F I G U R E 1 Reference retention curve in black and an overview of
main van Genuchten (vG) parameter (𝛼, 𝑛, 𝜃r , 𝜃s) effects.

2.2 Predicting soil moisture variability and
autocovariance based on soil water retention
variability

Field heterogeneity can be described by the variability of
the soil water retention curve throughout a field (Figure 1).
In practice, the retention curve variability can be obtained
through repeated sampling of undisturbed soil cores. The
reference retention curve corresponds to the reference vG
parameter set fitted to the average of the soil water contents
measured in all soil cores at a given pressure head.

Soil moisture variability can be predicted as a function
of mean soil moisture based on the variability of the soil
water retention curve. Assuming a uniform soil water poten-
tial, the mean soil moisture and its standard deviation can
be calculated for each soil water potential. In addition to soil
moisture variability, soil moisture covariance can also be esti-
mated based on this water retention curve variability. The
(co)variance between two soil water potentials, or two mean
soil water contents, can be calculated using Equation (4). This
approach will be referred to as RC.

cov
(
ℎ𝑖, ℎ𝑗

)
= cov

(
θ̄ℎ𝑖 , θ̄ℎ𝑗

)
= 1
𝑛rc − 1

𝑛rc∑
rc

(
θwrc

(
ℎ𝑖, 𝑝 (rc)

)

− θ̄wrc
(
ℎ𝑖
)) (

θwrc
(
ℎ𝑗, 𝑝 (rc)

)
− θ̄wrc

(
ℎ𝑗
))
, (4)

where 𝑛rc is the number of water retention curves,
𝜃wrc(ℎ, 𝑝(rc)) is the soil water content of water reten-
tion curve rc at water potential ℎ, with 𝑝(rc) being the
parameter set of the water retention curve, and with mean soil
water content �̄�wrc(ℎ) of all water retention curves at water
potential ℎ.

2.3 Predicting soil moisture variability and
autocovariance derived from a first-order
expansion of the water retention curves

Soil moisture variability and covariance can be derived anal-
ogous to the derivation of Qu et al. (2015) using a first-order
expansion of the vG function assuming a horizontally uni-
form water potential (Supporting Information Appendix B).
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6 of 20 HENDRICKX ET AL.Vadose Zone Journal

The expression is based on the variability of vG parameters
𝛼, 𝑛, and 𝜃s and accounts for vG parameter correlations, while
variability in and correlations with 𝜃r are neglected. This
method will be referred to as RC-FO (Equation 5). Another
model is derived from this, now assuming the vG parame-
ters are uncorrelated, and will be referred to as RC-FO-uncorr
(Equation 6).

c𝑜𝑣
(
ℎ𝑖, ℎ𝑗

)
= c𝑜𝑣

(
�̄�ℎ𝑖 , �̄�ℎ𝑗

)
,

= 𝑏0𝑖𝑏0𝑗

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜎2
𝛼

[
𝑏1𝑖𝑏1𝑗

]
+𝜎2

𝑛

[
𝑏3𝑖𝑏3𝑗

]
+ 𝜎2

𝜃𝑠

[
𝑏4𝑖𝑏4𝑗

]
+𝐶𝑜𝑣 (𝛼, 𝑛)

[
𝑏1𝑖𝑏3𝑗 + 𝑏3𝑖𝑏1𝑗

]
+c𝑜𝑣

(
𝛼, 𝜃𝑠

) [
𝑏1𝑖𝑏4𝑗 + 𝑏4𝑖𝑏1𝑗

]
+c𝑜𝑣

(
𝑛, 𝜃𝑠

) [
𝑏3𝑖𝑏4𝑗 + 𝑏4𝑖𝑏3𝑗

]
,

(5)

c𝑜𝑣
(
ℎ𝑖, ℎ𝑗

)
= 𝑏0𝑖𝑏0𝑗

{
𝜎2
𝛼

[
𝑏1𝑖𝑏1𝑗

]
+𝜎2

𝑛

[
𝑏3𝑖𝑏3𝑗

]
+ 𝜎2

𝜃𝑠

[
𝑏4𝑖𝑏4𝑗

]}
, (6)

where 𝑏𝑥𝑖 parameters are a function of mean vG param-
eters and soil water potential ℎ𝑖 (see Supporting Information
Appendix A, Equations A1–A5) with 𝑏0𝑖 = 𝑏0(ℎ𝑖), and 𝜎𝛼 , 𝜎𝑛,
and 𝜎𝜃s represent the standard deviation of the respective vG
parameters (Qu et al., 2015).

3 MATERIALS AND METHODS

3.1 Theoretical approach: Virtual soil

The data used in the first part of this study included daily soil
water contents (m3·m−3) at 0.1 m depth in a two-dimensional
virtual soil: a vertical plane of 5 × 5 m, covered with
grass with uncompensated root water uptake (see Supporting
Information Appendix D, Figure D1). The data were made
available from a study on soil heterogeneity (Schlüter et al.,
2013; Schlüter, Vogel, et al., 2012) where soil water flow
was simulated using 10-year weather data comprising daily
values for precipitation and potential evapotranspiration of
Magdeburg (eastern Germany), with alternating wet and dry
periods. The lateral resolution of the data at 0.1 m depth was
0.02 m (250 data points over a distance of 5 m). The profile
consisted of a heterogeneous silty cover and a sandy subsoil
with embedded loam lenses (USDA classification). The silty
cover layer consisted of a plow horizon down to 0.3 m and an
untilled layer below. Plowing in the topsoil layer resulted in
isotropic subscale heterogeneity, with horizontal and vertical
correlation lengths 𝜆𝑥,𝑦 = 0.04 m. As the distance between
sample points is required to be larger than the horizontal cor-
relation lengths to be considered independent, a sampling
distance of 0.08 m was adopted.

The heterogeneity in the silty cover was characterized by a
Miller–Miller scaling of the water retention and conductivity

function (Miller & Miller, 1956), defined by a reference water
retention function ℎ∗m(𝜃) and a reference conductivity function
𝐾∗(𝜃). These hydraulic reference functions corresponded to a
characteristic pore size 𝑟∗ with scaling factor 𝜒(�⃗�) = 𝑟(�⃗�)∕𝑟∗,
where �⃗� = (𝑥, 𝑧) is the position vector, and parameters of the
hydraulic reference functions are shown in Table 2. A 0.08-
m-deep, loose seed bed with additional macroporosity was
described by a bimodal retention function for which the frac-
tions are denoted in the table. The plow pan was represented
by a thin compacted soil layer perforated by macropores.

Pore size distributions are typically log-normal, meaning
that ln(𝜒) may be modeled using a normal distribution with
mean μ[ln(χ)] = 0 and standard deviation σ[ln(χ)], where
σ[ln(χ)] = 0 corresponds to a homogeneous domain. For the
silty cover, a scaling factor 𝜒 with σ[ln(χ)] = 0.5 (Table 2)
was applied to the reference water retention function ℎ∗m(𝜃) as
given by Equation (7) (Schlüter et al., 2013). A scaling of ℎ
corresponds to a scaling of the vG shape parameter 𝛼.

ℎm
(
�⃗�, 𝜃

)
= ℎ∗m (𝜃) 𝜒

(
�⃗�
)−1 = ℎ∗m (𝜃) 1

eln(𝜒)
. (7)

The roots were modeled either as a deterministic, depth-
dependent (Z) or variable, structure-dependent (S) root dis-
tribution, both of which were static. The deterministic root
distribution (Z) was a function of depth but was independent
of soil structure, resulting in spatially uniform roots and water
uptake at a certain depth. In contrast, the variable root dis-
tribution (S) was a function of both depth and soil structure.
Moreover, the root distribution function 𝑑r was also defined as
a function of the scaling factor 𝜒 for the structure-dependent
root model (S) (Equation 8), as fine-textured areas indicated
by a low ln(𝜒) value exhibit a higher resistance against root
penetration (Schlüter et al., 2013).

𝑑r (𝑧, 𝜒) = 𝜒
(
�⃗�
)
𝑑r (𝑧) . (8)

To reproduce the soil heterogeneity, the ln(𝜒) normal distri-
bution was sampled (n = 250), resulting in 250 different water
retention curves for the 0.1 m depth (silty cover). Based on the
sampled retention curves, the mean soil water content and its
standard deviation were calculated under the assumption of a
constant soil water potential.

Since the soil heterogeneity was here solely due to vari-
ability in 𝛼, the variability in the other vG parameters, as
well as all vG parameter covariances, was zero. As a result,
there was no difference between two of the predictive models,
RC-FO and the uncorrelated equivalent RC-FO-uncorr. Both
prediction models Equations (5) and (6) could thus be reduced
to Equation (9) (RC-FO).

c𝑜𝑣
(
ℎ𝑖, ℎ𝑗

)
= cov

(
�̄�ℎ𝑖 , �̄�ℎ𝑗

)
= 𝑏0𝑖𝑏0𝑗𝑏1𝑖𝑏1𝑗𝜎2𝛼. (9)
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HENDRICKX ET AL. 7 of 20Vadose Zone Journal

T A B L E 2 van Genuchten (vG) parameters of the virtual soil (Schlüter et al., 2013).

Layer depth (m) 𝛔[𝐥𝐧(𝛘)] Ks (cm·day−1) 𝜽
𝒔

(m3·m−3) 𝜽𝐫 (m3·m−3) 𝜶 (cm−1) 𝒏

Seed bed (0.9/0.1) 0 – 0.08 0 60 0.511 0.034 0.016 / 0.2 1.37 / 4

Silty cover 0.08 – 1.00 . . . 2.00 0.5 6 0.460 0.034 0.016 1.37

Plow pan 0.27 – 0.33 0 0.06 0.379 0.039 0.0094 1.37

Sandy subsoil 1.00 . . . 2.00 – 5.00 0 643.2 0.38 0.05 0.1 3.18

Loam lenses 1.00 . . . 2.00 – 5.00 0 9.6 0.40 0.06 0.0111 1.47

3.2 Case study approach: Validation data

In two repeated field trials (2020 and 2021), field vari-
ability was assessed during two growing seasons of leek
(July to December) based on undisturbed soil cores, while
high-frequency dielectric capacitance soil moisture sensors
(TEROS 10) were installed at different field locations at 15 cm
depth to capture soil moisture variability, along with sensor
measurement error autocorrelation. By applying the man-
ufacturer’s calibration for mineral soils to convert the raw
sensor output in millivolts to volumetric soil moisture content
(m3·m−3) (Equation 10), an absolute accuracy of 0.03 m3·m−3

could be obtained (METER Group, 2018).

𝜃
(
m3 ⋅m−3) = −2.154 + 3.898 × 10−3 × mV

− 2.278 × 10−6 × mV2

+ 4.824 × 10−10 × mV3. (10)

The sensors were linked to a datalogger with a communica-
tion module for real-time online data access. The raw sensor
measurements were aggregated to daily observations.

The experimental design consisted of four locations (25 m
apart), each consisting of two or three embedded sublocations
(2 m apart) in 2020 and 2021, respectively, with one sensor
installed at each sublocation in the root zone at 15 cm depth.
The field was a loamy sand to sandy loam soil and was located
in Sint-Katelijne-Waver, Belgium. The duration of the grow-
ing season and the amount of rainfall during this growing
season were 175 days and 330.4 mm in 2020, and 149 days
and 334.7 mm in 2021. The field was irrigated with sprin-
klers with a total amount of 50 mm (four irrigation events) in
2020 and 30 mm (two irrigation events) in 2021.

3.3 Validation metrics

The predictive models of soil moisture standard deviations
and covariances were compared to observed soil moisture
standard deviations and covariances. The root-mean-square
error (RMSE) (Equation 11) and relative root-mean-square
error (rRMSE; Equation 12) are used as a quantitative metric

to evaluate prediction skill.

RMSE =

√√√√1
𝑛

𝑛∑
𝑖=1

(
�̂�𝑖 − 𝑦𝑖

)2
, (11)

rRMSE = RMSE
�̄�

× 100%, (12)

where 𝑦𝑖 is the ith observed value, �̂�𝑖 is the ith predicted value,
and 𝑛 is the total number of data points. The rRMSE is com-
puted as the RMSE divided by the mean observed value �̄�.
The variable 𝑦 may represent the standard deviation or the
covariance.

While the RMSE is the standard deviation of the residuals
and is stated in the same units as the corresponding variable,
rRMSE is a relative measure of variation in accuracy, which
is easier to interpret. Model accuracy is considered excellent
when rRMSE < 10%, good if 10% ≤ rRMSE < 20%, fair if
20% ≤ rRMSE< 30%, and poor if rRMSE ≥ 30% (Despotovic
et al., 2016).

4 RESULTS AND DISCUSSION

4.1 Theoretical approach: Virtual soil

4.1.1 Soil heterogeneity

The sampled water retention curves and the mean soil mois-
ture curve are shown in Figure 2. The Miller–Miller scaling
of soil water potential ℎ resulted in a vertical shift of the water
retention curve, which corresponds to a scaling of the vG
shape parameter 𝛼. Due to the lognormal character of the scal-
ing, the distribution of 𝛼 was positively skewed causing the
arithmetic mean value for 𝛼 (0.017 cm−1) to be different from
the reference value (0.016 cm−1). The 𝑛 parameter, the resid-
ual soil moisture 𝜃r , and the saturation point 𝜃s were assumed
constant; hence, the retention curve was not compressed, that
is, the slope of the curve remained unchanged and curves did
not intersect. Based on this retention curve variability, soil
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8 of 20 HENDRICKX ET AL.Vadose Zone Journal

F I G U R E 2 Soil heterogeneity: pF (black, left axis) and soil
moisture standard deviation (green, right axis) predicted based on the
variability of the soil water retention curve (RC) as a function of mean
soil moisture.

F I G U R E 3 Ten-year time series of the mean soil moisture at
0.1 m depth in the virtual field with the depth-dependent root
distribution (A) and soil moisture deviations from the mean soil
moisture shown for eight independent sample locations (B).

moisture variability could be computed assuming a constant
soil water potential (Figure 2, right axis).

The aggregated and sampled soil moisture time series illus-
trate the soil moisture variability and the autocorrelation of
such time series at fixed locations (Figure 3).

F I G U R E 4 Soil moisture standard deviation as a function of
mean soil moisture: based on retention curve variability RC (solid line),
based on the first-order van Genuchten (vG) model approximation
RC-FO (dashed line), and observed variability (SM) for the
depth-dependent (Z) and structure-dependent (S) root distribution.

4.1.2 Soil moisture variability

Soil moisture variability was predicted based on retention
curve variability (RC) as illustrated in Figure 2 and based on
the first-order vG model approximation (RC-FO) (Figure 4).
The two predictive models diverge exponentially with increas-
ing soil moisture. The steep increase in RC-FO at high soil
water content is due to the 𝑏0 parameter becoming infinitely
large for a small soil water potential ℎ (see Supporting Infor-
mation Appendix A, Equation A1). The predictive models
were compared with observed soil moisture variability (SM)
for the depth-dependent (Z) and structure-dependent (S) root
distribution scenario (Figure 4). The observed soil moisture
ranged from 0.07 to 0.46 m3·m−3 over the 5 m distance in the
10-year period.

Figure 4 shows that all observed data points are on or above
the predicted variability curve, as this curve is the minimal
expected variability that results from soil heterogeneity. In this
virtual soil, additional soil moisture variability can be due to
plant variability for the case of structure-dependent roots (S),
subsoil variability, and hydraulic nonequilibrium, that is, the
water potentials are not necessarily uniform at a certain depth
(Schlüter, Vanderborght, et al., 2012; Vogel et al., 2010). The
RC was the better variability prediction compared to RC-
FO, with an rRMSE of 20.71% (fair accuracy) and 40.28%
(very poor accuracy), respectively. The rRMSE of RC was
11.79% and 25.84% for the depth-dependent (Z) and structure-
dependent (S) root distribution, respectively. The larger error
for the latter (S) was expected due to the additional variability
in root water uptake as a result of the variable root distribu-
tion and root water uptake. As RC-FO and RC are similar at
low to mid-range soil moisture contents, RC-FO might still
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HENDRICKX ET AL. 9 of 20Vadose Zone Journal

F I G U R E 5 T-S: Temporal correlation function (A) and autocovariance matrix (B) for the depth-dependent (Z) root distribution. Time lags
𝑙Δ𝑡 > 𝑝∕2 are undefined. In comparison, the nonstationary temporal autocovariance matrix (T-NS) is also shown for the depth-dependent (Z) root
distribution (C).

be a good predictor for irrigation purposes for which the wet
range is of less interest. All (r)RMSE values are summarized
in Supporting Information Appendix C (Table C1).

4.1.3 Soil moisture autocovariance

Next to soil moisture variability, soil moisture autocovariance
was also calculated based on observed data (T-S, T-NS, SM)
and estimated based on two predictive models (RC, RC-FO).

First, the stationary temporal autocorrelation of the time
series (T-S) was computed using Equation (2). The T-S model
was expected to be a poor estimator, as local soil moisture
deviations are not a stationary random process. On Figure 5,
the temporal autocovariance matrix shows a diagonal pattern,
as each lag time difference has a fixed correlation, starting
from the maximum covariance (𝑟 = 1) for a lag 𝑙Δ𝑡 = 0 to
a covariance equal to 0 for a lag 𝑙Δ𝑡 = 𝑝∕2, which corre-
sponds to 5 years. The T-S of the depth-dependent (Z) and
structure-dependent (S) root distribution scenario is nearly
identical, except for the maximum autocovariance, which is
higher for the latter (S) (not shown). This model prediction
can be compared to the nonstationary temporal autocovari-
ance (T-NS) based on the observed time series (Figure 5C),
where correlation does not depend on the time lag, but the
measurement times themselves. It is clear that T-S (Figure 5B)
does not agree with the reference observed autocovariance
(T-NS; Figure 5C), which is confirmed by a high rRMSE of
87.09%, indicating that a certain time lag may have a different
correlation depending on the measurement times. The covari-
ance surface plotted versus measurement times (Figure 5C)
is a very irregular surface, which does not correspond with a
smooth surface versus time. This suggests that it is difficult
to describe the covariance as a simple function of the times of
the two measurements. Hence, assuming stationarity is proven

inappropriate to estimate autocorrelation for a process-driven
time series such as soil moisture.

Second, the autocovariances between pairs of deviations
from mean soil water contents (SM) were calculated using
Equation (3) with a maximum bin width of 0.005 m3·m−3.
This matrix will be our reference observed autocovariance
as a function of mean soil moisture and is shown for both
rooting scenarios in Figure 6. In contrast to the autocovari-
ance surface plotted versus measurement times (Figure 5C),
the autocovariance surface plotted versus the average soil
moisture contents is a more smooth surface that could be
represented by a bivariate function. This indicates that the
autocovariance is rather related to the average soil moisture
status of the field at two different times than to the times
of the measurements or time difference. These covariances
largely correspond to correlations close to 1, while minimum
correlations of 0.65 and 0.4 were obtained for the depth-
dependent (Z) and structure-dependent (S) root distribution,
respectively, for a mean soil moisture content near saturation
point (0.46 m3·m−3) in combination with lower soil moisture
contents (see Supporting Information Appendix D, Figure
D2). This means that soil moisture variability at high mean
soil moisture contents is less dependent on soil moisture vari-
ability at mean soil moisture contents lower than 0.40 m3·m−3,
that is, a large positive soil moisture deviation at one location
in a dry to medium wet soil will not necessarily go hand in
hand with such a large positive soil moisture deviation at that
same location near saturation. These correlations confirm the
expected high autocorrelation in soil moisture time series at
fixed locations.

Third, soil moisture covariance was estimated based on soil
moisture variability derived from water retention variability
(RC). The covariance between two soil water potentials, or
two mean soil water contents, was calculated using Equa-
tion (4), with a bin width of 0.01–0.0005 m3·m−3. As the

 15391663, 0, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/vzj2.20295 by E

V
ID

E
N

C
E

 A
ID

 - B
E

L
G

IU
M

, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 20 HENDRICKX ET AL.Vadose Zone Journal

F I G U R E 6 SM: Covariance matrices in function of mean soil moisture contents based on virtual observed soil moisture variability for the
depth-dependent (Z) and structure-dependent (S) root distribution, after applying a Gaussian filter with a standard deviation of 10 soil moisture steps.

F I G U R E 7 RC: Covariance matrix in function of mean soil moisture contents based on retention curve variability (A). RC-FO: Covariance
matrix in function of mean soil moisture contents based on the first-order approximation of the van Genuchten function (B). The soil moisture range
of the observations of the depth-dependent (Z) root distribution is indicated (- - -).

retention curves were the same for both the depth-dependent
(Z) and structure-dependent (S) root distribution, the same
RC model applies to both scenarios. Figure 7A shows the
covariance matrix that corresponds to an overall high corre-
lation with a minimum correlation of 0.85 for a mean soil
moisture content near saturation point (0.46 m3·m−3) in com-
bination with lower soil moisture contents (see Supporting
Information Appendix D, Figure D3). When comparing the
RC prediction to the observed autocovariances (SM), the RC
model is found to be a fair predictor (rRMSE(Z) = 29.63%),
but tends to underestimate autocovariance (Figure 8, left),
which is mainly because hydraulic nonequilibrium was not
taken into account, since the RC model assumes uniform
water potentials at a given depth. Interestingly, while high
soil moisture levels showed good performance, the perfor-
mance was lower for covariances between similar low soil

moisture levels. This underestimation is even larger for the
observed autocovariances of the structure-dependent (S) root-
ing scenario (Figure 8, right), where root density variability,
resulting in variability in root water uptake, has a significant
impact. Again, the performance was mostly low for covari-
ances between similar low soil moisture levels, which is the
range where the variable rooting has the largest impact. In
practice, when applying this method to irrigated fields, soil
moisture is not expected to reach such low soil moisture lev-
els, and hence, good performance is assumed. In contrast, the
correlation is mostly overestimated in both scenarios because
of a general underestimation of soil moisture variability, as is
shown in Figure 4.

Finally, soil moisture covariance was estimated based on
the first-order approximation of the vG function (RC-FO)
(Figure 7B). From Equation (9), the correlations could be

 15391663, 0, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/vzj2.20295 by E

V
ID

E
N

C
E

 A
ID

 - B
E

L
G

IU
M

, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



HENDRICKX ET AL. 11 of 20Vadose Zone Journal

F I G U R E 8 Scatterplots of predicted (RC) versus observed (SM) autocovariance by comparing the covariance of observed pairs of deviations
from the mean soil moisture to the predicted covariance derived from retention curve variability for the depth-dependent (Z) and structure-dependent
(S) root distribution.

expected to equal 1. In analogy with the predicted variance,
soil moisture covariance becomes infinitely large at high soil
moisture due to the 𝑏0 parameter. This results in a poor predic-
tion (rRMSE >> 30%) with an overprediction of covariances
at high soil moisture contents, while covariance is underpre-
dicted at low soil moisture similar to the RC prediction. All
(r)RMSE values are summarized in Supporting Information
Appendix C (Table C2).

4.2 Validation: Case study approach

4.2.1 Soil heterogeneity

The water retention measurements and vG fitted curves are
shown in Figure 9. For each soil water content, the standard
deviation of the soil water content between the different water
retention curves at a constant water potential was calculated
and is shown by the green curve. In the literature, the shape
parameter 𝑛 is often assumed to be constant, or in other words,
the soil is assumed to be macrosimilar (Sadeghi et al., 2016).
In reality, the curves intersect (Figure 9), due to variability in
the saturated soil moisture content in combination with vari-
ability in the 𝑛 and/or 𝛼 parameter. One should take note that
no significant variability was observed in the residual water
content 𝜃r since this parameter was always near zero.

The vG model parameters seem strongly correlated
(Figure 10). In literature, there is no consensus on
correlation between vG parameters. Some report no
significant correlation (Smith & Diekkrüger, 1996; Zhu &
Mohanty, 2003), while others proclaim substantial correla-
tions among vG parameters (Guber et al., 2004; Vereecken
et al., 2010). Guber et al. (2004) stated that vG parameters
𝛼 and 𝑛 relate to the large and small aggregate contents in
the soil, respectively. This supports the observed negative
correlation between these two parameters in this study. On

top of that, Guber et al. (2004) found that a decrease in
saturated water content 𝜃s in silt loam and loam soils was
accompanied by an increase of small aggregate contents.
This is a plausible argument for the positive correlation
between 𝜃s and 𝛼 and the negative correlation between 𝜃s and
𝑛 that was observed in 2021. However, the latter correlation
was found to be positive in 2020. This could be explained
by the difference in bulk density between the two years,
indicating soil compaction in 2021, resulting in a decreased
saturated water content and increased 𝑛 with a higher degree
of compaction.

4.2.2 Soil moisture variability

The standard deviation was predicted as a function of the
mean soil water content and was validated with sensor mea-
surements. Soil moisture variability was calculated for 2020
and 2021 based on the variability of the soil water reten-
tion curve (RC), and both the correlated (RC-FO; Equation 5)
and the uncorrelated first-order model (RC-FO-uncorr; Equa-
tion 6). The three predictive models are shown together with
the validation sensor data for both years (Figure 11). The
range of the measurements was limited, having a wet grow-
ing season in 2021, and limited sensor measurements in 2020,
mostly in the dry range. It should also be noted that the two
growing seasons on the same field could not be described by
the same model predictions since the soil heterogeneity was
found to be temporally variable. Others also reported temporal
variability in soil hydraulic properties in a field, both seasonal
and interannual, such as bulk density, soil porosity, saturated
hydraulic conductivity, and vG parameters (Alletto & Coquet,
2009; Jirků et al., 2013; Kargas et al., 2016).

The predictive models showed reasonable results for the
case study, both visually (Figure 11) and numerically, where
RC showed the best predictions with an overall rRMSE of
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12 of 20 HENDRICKX ET AL.Vadose Zone Journal

F I G U R E 9 Measured soil heterogeneity: pF (black, left axis) and soil moisture standard deviation (green, right axis) as a function of mean soil
moisture (RC) for 2020 (A) and 2021 (B).

F I G U R E 1 0 Correlation heatmap of the van Genuchten (vG)
model parameters of 2020 (A) and 2021 (B).

F I G U R E 1 1 Soil moisture standard deviation as a function of
mean soil moisture: RC (—), RC-FO (- - -), RC-FO-uncorr (∙ ∙ ∙), and
observed sensor measurement variability (SM) during two growth
periods (2020 and 2021).

16.09%, followed by RC-FO (rRMSE = 22.23%). Mean-
while, the uncorrelated first-order model-based variability
(RC-FO-uncorr) showed poor predictions (rRMSE= 57.88%)
as the variability was severely overpredicted. The difference
between the first-order approximation models demonstrates

the importance of vG model parameter covariances. The pre-
diction skill of the three predictive models is shown for both
growing seasons individually in Table 3. Even though the two
growing seasons together resulted in a fair range of soil mois-
ture levels, saturation point was never captured in the daily
sensor measurements. Hence, the predictive models could not
be validated for wet soil moisture observations and the results
must be interpreted with caution. However, this should not be
an issue as high soil moisture levels are of less importance for
irrigation scheduling purposes.

A note of caution is due here since the observed soil
moisture variability could also be caused by random sen-
sor measurement noise, although one would expect higher
observed standard deviations if this would be the case. It
is also notable that the measured soil moisture variabil-
ity sometimes even fails to reach the predicted variability,
even though this prediction is the minimal expected vari-
ability. A possible explanation for this might be that the
spread and number of sensors could not capture all soil
heterogeneity in the field. Another possible explanation for
this is an inherent measurement error of the sensor devices,
which would result in a deviation of the mean soil moisture
level.

4.2.3 Soil moisture autocovariance

In this section, the autocovariance model outputs are dis-
cussed and compared with each other. The soil moisture-based
covariances derived from observations cannot be displayed
as heatmaps since insufficient observation pairs covering the
entire range of soil moisture combinations were available but
are used as reference at the end of this section in a one-on-one
comparison where each observation of a soil moisture pair is
compared to the corresponding model estimation of that pair.

First, the covariance matrices were calculated based on
the water retention curves (RC) for both 2020 and 2021 and
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HENDRICKX ET AL. 13 of 20Vadose Zone Journal

T A B L E 3 Prediction skill of soil moisture variability models (STDEV: RC, RC-FO, and RC-FO-uncorr) for two growth periods (2020 and
2021): root-mean-square error (RMSE) and relative root-mean-square error (rRMSE) of standard deviations.

2020 2021
RC RC-FO-uncorr RC-FO RC RC-FO-uncorr RC-FO

RMSE (m3·m−3) 0.00312 0.00593 0.00311 0.00315 0.01361 0.00496

rRMSE (%) 24.74 47.00 24.63 13.24 57.15 20.80

are shown as heatmaps in function of volumetric soil mois-
ture (Figure 12A,B). Both case studies show similar patterns
of positive and negative covariances. The covariances are
generally larger for the 2021 case study. In 2020, negative
covariances exist between high soil water contents close to
saturation and moderate to low soil water contents. In contrast,
positive covariances exist for all soil moisture contents when
the moisture contents in the pairs does not differ more than
0.1 m3·m−3 or when both moisture content values are lower
than 0.3 m3·m−3. In Figure 9A, an intersection of the curves
is visible around pF 1.7, equivalent to 0.34 m3·m−3, and is
characterized by a local minimum of the standard deviation.
This intersection is also visible on the heatmap as a transition
from positive to negative covariances. In 2021, also negative
covariances exist between high soil water contents close to
saturation and moderately high to low soil water contents, but
the range of high soil water contents that are negatively cor-
related with lower ones is much narrower than that in 2020.
Another difference with 2020 is the larger covariance for inter-
mediate water contents. In Figure 9B, an intersection of the
curves is visible around pF 1.43, equivalent to 0.38 m3·m−3,
and is characterized by a local minimum of the standard devi-
ation. This intersection is visible on the heatmap as well, as
a transition from positive to negative covariances. In the dry
range (pF > 4, or θ < 0.1 m3·m−3), covariances are negligibly
small.

Next, the covariance matrices were calculated based on
the vG first-order approximation with and without consider-
ing vG parameter correlations (RC-FO and RC-FO-uncorr)
for both 2020 and 2021 and are shown as heatmaps in func-
tion of volumetric soil moisture (Figure 12C–F). Again, both
case studies show similar patterns of positive and negative
covariances. It is already shown in Figure 11 that the stan-
dard deviation becomes much larger for the FO models for
soil moisture contents larger than 0.4 m3·m−3 in 2020 and
0.3 m3·m−3 in 2021. These overestimations are reflected in
the autocovariance matrices as well and can be identified as
the dark area in the upper right corners.

The temporal autocorrelation of the time series (T-S and T-
NS) was not computed for the case study, as T-S was already
proven inappropriate in the theoretical approach.

Predicted and observed soil moisture covariances are com-
pared visually and numerically. The performance of RC and
RC-FO is shown in Figure 13. The model predicts a smaller

range of variation in covariance than the observations, but the
bias of the model-predicted covariance was small. The scat-
terplot reveals that the largest underestimation was observed
for covariance predictions of low soil moisture levels, as was
also observed in the virtual case (Figure 8), while covari-
ance predictions at similar high soil moisture levels show
good performance, and the model overpredicted the covari-
ance between the high and low moisture contents. RC-FO
showed the best predictions with a fair overall rRMSE of
28.04%, followed by RC (rRMSE = 34.38%). As expected,
RC-FO-uncorr severely overpredicts soil moisture covariance
(rRMSE > 100%), analogous to its soil moisture variability
prediction. The prediction skill of the three predictive mod-
els is summarized for both growing seasons individually in
Table 4.

As the ranges of observed moisture contents during each
of the two growing seasons were small, the predictive models
could only be validated for a limited set of soil moisture pairs;
hence, the results must be interpreted with caution.

5 GENERAL DISCUSSION

5.1 Soil moisture variability

The results of the retention curve-based models to estimate
soil moisture standard deviation as a function of mean soil
moisture content show that soil moisture variability can be
predicted based on soil heterogeneity or, more specifically,
soil properties and their variability, which can be quantified
via undisturbed soil samples. This also indicates that soil
heterogeneity is the main cause of soil moisture variability
measured with sensors at multiple fixed locations across a
field. However, as other factors might influence this variabil-
ity, this prediction is only the minimum expected soil moisture
variability and serves as a baseline. On top of soil heterogene-
ity, also crop and root growth variability can play a significant
role, as was shown in this study by the virtual soil case with the
structure-dependent (S) root distribution, where soil moisture
variability at low mean soil moisture was around two times
higher than for the deterministic (Z) root distribution scenario.
Next to soil and crop heterogeneity, other field factors such
as hydraulic nonequilibrium, topography, soil management,
nonuniform precipitation, and irrigation (Wilson et al., 2004)
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14 of 20 HENDRICKX ET AL.Vadose Zone Journal

F I G U R E 1 2 The covariance matrices in function of mean soil moisture contents resulting from the predictive autocovariance models (RC,
RC-FO, and RC-FO-uncorr) for 2020 (left) and 2021 (right).

T A B L E 4 Prediction skill of soil moisture covariance models (ACOV: RC, RC-FO-uncorr, and RC-FO) for two growth periods (2020 and
2021): root-mean-square error (RMSE) and relative root-mean-square error (rRMSE) of covariances, and RMSE of correlations.

2020 2021
RC RC-FO-uncorr RC-FO RC RC-FO-uncorr RC-FO

RMSE [(m3·m−3)2] 0.000052 0.000195 0.000078 0.000207 0.000741 0.000164

rRMSE (%) 45.13 167.85 67.38 30.88 110.64 24.48

RMSE corr (–) 0.352 0.363 0.354 0.042 0.043 0.044
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HENDRICKX ET AL. 15 of 20Vadose Zone Journal

F I G U R E 1 3 Scatterplots of predicted (RC [A] and RC-FO [B]) versus observed (SM) covariances for 2020 by comparing the covariance of
observed pairs of deviations from the mean soil moisture to their corresponding predicted covariances.

can also contribute to soil moisture variability. Additionally,
when measuring soil moisture with soil moisture sensors, an
additional inherent measurement error must be kept in mind
as well, as this is no part of the actual soil moisture variability
in the field.

Soil moisture variability can be derived from the variabil-
ity of the soil water retention curves at a constant soil water
potential (RC). RC is a good estimator (10%< rRMSE< 20%)
for soil moisture variability assuming a horizontally uniform
root distribution, but caution must be taken when predicting
soil moisture variability in a field with large plant variabil-
ity. The first-order approximation of the vG function taking
vG parameter covariances into account (RC-FO) was found
to be a good predictor for soil moisture variability at low to
mid-range soil moisture levels, similar to RC, but it over-
estimates variability at high soil moisture levels. When vG
parameter correlations were not considered (RC-FO-uncorr),
soil moisture variability was overestimated. Hence, the dif-
ference between the two first-order approximation models
emphasizes the importance of the correlation between vG
model parameters.

The predicted variability curve based on the water reten-
tion curves (RC; Figure 4) is similar to other models and
measurement data that are found in literature (Albertson &
Montaldo, 2003; Famiglietti et al., 2008; Lawrence & Horn-
berger, 2007; Manns et al., 2014; Pan & Peters-Lidard, 2008;
Rosenbaum et al., 2012; Schlüter et al., 2013; Teuling &
Troch, 2005; Vereecken et al., 2007). For example, the fol-
lowing relation between standard deviation and mean soil
moisture was derived by Famiglietti et al. (2008), as the coeffi-
cient of variation (CV = 𝜎

𝜇
) in function of mean soil moisture

can be assumed to follow an exponential curve:

𝜎 = 𝑘1𝜇 × e−𝑘2𝜇, (13)

where 𝑘1 and 𝑘2 are fitting parameters determined by the CV
model fit. This empirical soil moisture prediction curve has a

similar shape compared to the predicted soil moisture based
on the retention curve variability (RC), with zero variability
at the minimum mean soil moisture, a maximal variability at
mid-range soil moisture levels, and a decrease in variability
toward high mean soil moisture levels. Such a model could be
used as a hypermodel to estimate soil moisture variability.

5.2 Autocorrelation

Autocorrelated errors are expected in soil moisture time series
measured by sensors at fixed locations. The measurement data
in this study support this as the soil moisture measurement
errors exhibited high autocorrelations. The virtual study even
shows that if soil structure and its heterogeneity in the field
remain the same, this autocorrelation could persist over years
of time.

Soil moisture covariance can be predicted as a function of
the spatial averaged soil moisture based on the variability of
the soil water retention curves at a constant soil water potential
(RC). RC was found to be a poor predictor (rRMSE ≥ 30%),
as autocovariance might be underpredicted at extreme soil
moisture levels because not all causes of heterogeneity were
included in the model. The vG first-order approximation
model (RC-FO) resembles the RC model at low mean soil
water contents, but overestimates autocovariances at high soil
water contents, resulting in misleading improved prediction
results (20% < rRMSE < 30%). When vG parameter cor-
relations are not considered (RC-FO-uncorr), soil moisture
covariance was severely overpredicted (rRMSE > 100%).

Despite the low performance of the covariance predic-
tion, which is mostly due to underprediction at low soil
moisture levels, both the simulation data and field measure-
ments, along with the model, show significant correlations
and clearly indicate that neglecting autocorrelation would be
an incorrect assumption. Although neglecting autocorrelation
is the classic assumption in hydrological inverse modeling,
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16 of 20 HENDRICKX ET AL.Vadose Zone Journal

data assimilation, and validation, the results of our study
demonstrate that soil moisture covariance should be acknowl-
edged. Ignoring or underestimating this covariance could
result in an underestimation of the uncertainty of model pre-
dictions by a model that is calibrated to a time series of soil
moisture measurements. Furthermore, the classic approach
describing temporal autocorrelation of a soil moisture time
series assumes stationarity and was proven inappropriate. An
approach that describes the autocovariance as a function of the
average soil moisture contents at the two different measure-
ment times is more appropriate. In contrast to the covariance,
the RC model overestimates the correlation between soil
moisture measurements. This implies that the underestima-
tion of the covariance by the model is due to an additional
source of soil moisture variation that is not correlated to the
estimated variation based on the soil water retention curve.

5.3 Assumptions and limitations

When predicting soil moisture variability and covariance
using the proposed error models, some important assumptions
and limitations need consideration.

First of all, the error models predict soil moisture vari-
ability based on soil heterogeneity only and do not take into
account the variability in root water uptake, even though it
is known that both are linked closely (Clark et al., 2003;
Wang & Smith, 2004). This can result in an underestima-
tion of the actual (co)variance of soil moisture in a field, as
was shown in this study for the virtual soil, when comparing
soil moisture variability for the scenario of a depth-dependent
(Z) and structure-dependent (S) root distribution (Figure 4).
Teuling and Troch (2005) did consider land cover variabil-
ity, in contrast with our simulations and assumptions. When
plant variability is large and needs to be taken into account,
that is, in a field with large plant variability or on a larger
scale, the error model should be extended by including spatial
variability in canopy cover (Lawrence & Hornberger, 2007).
However, in irrigated fields, it is assumed that the canopy
is uniform and closed. Additionally, variations in slope and
aspect generate variations in microclimate and consequently
variations in transpiration demand. Hence, this approach is
valid for a uniform microclimate and flat topography, which
is an acceptable assumption in our study area.

Second, hydraulic equilibrium is assumed, that is, soil
water potential is assumed horizontally uniform in a field.
This means that the error models do not consider soil moisture
variability resulting from preferential flow and nonequi-
librium (Jarvis, 2007; Vogel et al., 2010). The prevailing
scenario where nonequilibrium conditions may occur is infil-
tration of water into relatively dry, heterogeneous soils due
to an irregular water front and low hydraulic conductivities
(Vogel et al., 2010).

Assuming hydraulic equilibrium implies that variability in
hydraulic conductivity is not considered, nor is the correlation
between the saturated hydraulic conductivity and vG model
parameters. It has, however, been shown that considerable
variation might exist in the unsaturated hydraulic conductiv-
ity function (Vogel et al., 2023), and moreover, the saturated
hydraulic conductivity and shape parameter 𝛼 are correlated
(Zhu & Mohanty, 2003). Qu et al. (2015) also found that
ln(𝐾s) is the second most sensitive parameter to affect soil
moisture variability. Therefore, hydraulic equilibrium at a cer-
tain depth is an important assumption, which could result
in an underestimation of soil moisture variability. However,
Schlüter et al. (2013) already showed that the horizontal vari-
ability in soil water potential was generally low for the virtual
soil at 0.1 m depth, as used in this study (CV < 0.5), which
ratifies this assumption. Additionally, in this study, the pre-
dicted soil moisture variability of the virtual soil without root
water uptake variability (Z), based on the retention curve vari-
ability (RC), was only slightly underestimating the observed
soil moisture variability, indicating only a small impact of
soil water potential variability. Qu et al. (2015) also assumed
hydraulic equilibrium and showed that this is an acceptable
assumption for variability predictions.

Third, variability in the residual water content was not
included in this study as it was not observed in our data.
Qu et al. (2015) also assumed a constant residual soil water
content. However, if the residual water content varies, its
variability dominates soil moisture variability at low water
contents and overrules violations of the hydraulic equilibrium
assumption.

Finally, the error models assume soil heterogeneity to
be static, even though other field studies showed seasonal
changes in soil structure (Alletto & Coquet, 2009; Jirků et al.,
2013; Kargas et al., 2016; Schlüter et al., 2011). This could
mean that the error models become less accurate during the
growing season and would be more difficult to parameterize.
This temporal variability exists on two timescales, namely, (1)
in between growing seasons (months-years) and (2) within
a growing season (days-weeks) (Jirků et al., 2013; Kargas
et al., 2016). Differences in soil properties in between grow-
ing seasons may be due to soil management, such as tillage
and soil nutrients, wet conditions at the start of the growing
season, erosion, and land use (crop rotation, cover crop). Jirků
et al. (2013) found that climatic conditions, mostly during the
winter and spring, played the leading role. This temporal vari-
ability also occurred in this study, as a significant change was
observed between water retention curves in 2020 and 2021,
even though they were measured on the same field, in the same
period (July). The largest variation was found in the saturated
soil water content and hence the bulk density, which could
be expected to increase due to compaction as a result of the
wet conditions in 2021. These findings are in line with liter-
ature, as soil properties, in particular bulk density, saturated

 15391663, 0, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/vzj2.20295 by E

V
ID

E
N

C
E

 A
ID

 - B
E

L
G

IU
M

, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



HENDRICKX ET AL. 17 of 20Vadose Zone Journal

hydraulic conductivity, and vG model parameters, were found
to be subjected to temporal variation that often has a greater
impact compared to their spatial variation (Feki et al., 2018).

On the other hand, soil properties may also be dynamic
during a growing season. Factors such as soil organisms,
nutrients, root formation, erosion, and periods of drought or
water excess may have an impact on soil aggregates, water
retention and conductivity, bulk density, pore distribution, and
preferential flow (Alletto & Coquet, 2009; Jirků et al., 2013;
Kargas et al., 2016; Schlüter et al., 2011). Another impor-
tant and well-known factor is hysteresis of the water retention
curve. More specifically, assuming a closed-loop hysteresis,
the shape parameter 𝛼 is the only variable during wetting and
drying cycles (𝛼drying ≤ 𝛼wetting) (Dohnal et al., 2006). How-
ever, Dohnal et al. (2006) found that the impact of hysteresis
of the water retention curve on soil water dynamics is not
significant and ignoring hysteresis did not lead to a substan-
tial deviation of the soil water model predictions. Qu et al.
(2015) implied that soil moisture variability is most sensi-
tive to the pore distribution represented by shape parameter
𝑛 in the vG model, which is expected to remain constant dur-
ing wetting and drying cycles (Dohnal et al., 2006). However,
shape parameters 𝛼 and 𝑛 relate to large and small aggregate
contents in the soil, respectively (Guber et al., 2004), and were
found to correlate negatively, which implies that both may
have a significant impact on soil moisture variability.

5.4 Application in practice

The errors of which we calculated the covariance refer to
the errors of the “true” field-scale averaged water contents
at a certain depth that are estimated from measurements by
a single sensor that stays at a fixed position. This error covari-
ance can be reduced by installing more sensors. If the sensors
are sufficiently far apart, the spatial covariance between the
measurements is close to zero and the measurements by the
different sensors can be assumed to be independent. The
covariance of the errors of the true spatial mean that are esti-
mated from the sample mean can then simply be obtained
from dividing the single measurement error covariance by the
number of sensors or the sample size n.

In practice, only a limited number of sensors are installed
in the field, mainly due to the cost and management of the
sensors, resulting in estimates of (co)variance that might not
always be accurate. Based on the desired marginal error, an
equation was proposed by Gilbert (1987) and Ott and Long-
necker (1988) to determine the number of point measurements
(N) that is required to accurately describe the mean value and
spatial variability (Brocca et al., 2010):

𝑁 =
(
𝑍𝛼∕2

)2
ME2 𝜎2, (14)

where Z is taken from the standard Z table for 𝛼 = 0.05 (95%
confidence interval), 𝜎 is the standard deviation, and ME is
the marginal error. For the case study, low soil moisture vari-
abilities were predicted, indicating only two to four sensors
would be required to obtain an ME = 10% of the mean value.
However, these numbers vary significantly depending on the
soil heterogeneity in a field.

To apply the proposed RC model in practice, accurate and
detailed soil data are required, that is, a set of water reten-
tion curves, preferably resulting from multiple undisturbed
soil samples throughout the field. As an alternative, retention
curves could be approximated by using soil map information
and/or scaling methods. The first-order approaches (RC-FO)
do not necessarily require a set of water retention curves but
might be used when parameters could be derived from other
soil information. Finally, for both models, historical field data,
for example, from previous years or from databases, will prob-
ably not suffice. We observed that soil water retention curves
varied from year to year due to variations in soil compaction
after tillage. Therefore, real-time data are preferred.

In this study, the cost of extra yearly soil core sampling was
lower than extra sensor modules, considering a 3-year sensor
usage period and repeated sampling. Additionally, installing
more sensors in a field is not desired in practice by farmers,
as it complicates field operations. However, the applicabil-
ity of the method should be assessed on a case-by-case basis,
depending on the goal, location, costs, budget, and so forth.

The RC and RC-FO methods also have the potential to
be upscaled to a remote sensing resolution. When using in
situ soil moisture data for validating or assimilating remote
sensing data, the (co)variability within a pixel is unknown
and measurement error autocorrelation is neglected. With the
proposed soil heterogeneity-based method, one could com-
pute the (co)variability of the mean soil moisture estimates
based on the soil types within this pixel, while retention curves
can be derived from soil maps and pedotransfer functions,
analogous to the method of Montzka et al. (2017). However,
on this scale, the assumption of horizontally uniform water
potential head may not be a valid assumption, and the plant
variability will be much larger, along with other factors such
as topography, groundwater depth, and spatial differences
in precipitation and irrigation, possibly resulting in a severe
underestimation of soil moisture (co)variability. Nonetheless,
it is likely preferable to consider an underestimated temporal
covariance of the error of the estimated mean soil moisture
from in situ sensors than to completely disregard it.

6 CONCLUSIONS AND OUTLOOK

This study provides a new perspective on the relation between
soil moisture variability and soil heterogeneity and sheds light
on the covariance between soil moisture deviations at fixed

 15391663, 0, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/vzj2.20295 by E

V
ID

E
N

C
E

 A
ID

 - B
E

L
G

IU
M

, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



18 of 20 HENDRICKX ET AL.Vadose Zone Journal

locations in a field as obtained with soil moisture sensors. In
this study, a mechanistic error model was proposed to predict
soil moisture variability and covariance based on the variabil-
ity of the vG soil water retention curve under the assumption
of a uniform soil water potential in the field. The proposed
models were validated both in a theoretical and a practical
setting. With such an error model, sensor measurements and
their uncertainty can be interpreted with more accuracy. Using
the sensor measurements directly to estimate their autocovari-
ance could be an alternative to using an error model, but only
if sufficient sensors are placed in the field. In practice, only
a limited number of sensors are installed in the field, which
might not give us an accurate estimate of (co)variance.

The main conclusions are as follows:

1. The variability of soil water retention curves can be used to
predict soil moisture variability assuming a uniform water
potential. Using this variability directly (RC) resulted in
good predictions (10% < rRMSE < 20%), while the vG
first-order approximation model (RC-FO) predicts similar
variabilities at low soil moisture but is unreliable at high
soil moisture levels.

2. The predicted soil moisture variability resulting from
soil heterogeneity is the minimum expected variability
in a field. On top of this, plant variability may have a
significant impact on soil moisture variability, as well
as other factors such as nonuniform irrigation, subsoil,
nonequilibrium, and so forth.

3. Measured soil moisture time series demonstrate auto-
correlation of the deviation of a local sensor measure-
ment from the field-scale average. The classic approach
describing temporal autocorrelation of soil moisture devi-
ations assuming stationarity was proven inappropriate
(rRMSE = 87%). Instead, a mechanistic approach was pre-
sented, as the variability of soil water retention curves
can also be used to predict soil moisture covariance. This
approach predicts the autocovariance as a function of the
average soil moisture contents at the two observation times
and not as a function of the time lag between obser-
vations and could describe the simulated and measured
covariances better than a stationary covariance function.
However, using RC variability directly resulted in poor
predictions (rRMSE ≥ 30%), as covariance was mostly
underpredicted. The vG first-order approximation model
(RC-FO) somewhat overpredicted covariances resulting in
misleading fair predictions (20% < rRMSE < 30%) and is
unreliable for high soil moisture levels, where covariance
was strongly overpredicted.

4. This study emphasizes the importance of the correlation
between vG model parameters. When predicting variabil-
ity with the vG first-order approximation model, it is
clear that soil moisture variability as well as covariance
is overpredicted when vG parameter covariances are not
considered.

The results of this study contribute to more reliable utiliza-
tion of in situ soil sensing data. A realistic representation of
spatial soil moisture variability has the opportunity to improve
predictions of hydrological land surface processes such as
evapotranspiration and runoff. When soil moisture measure-
ments are used to calibrate such hydrological models, it is
necessary to take into account the uncertainty of the mea-
surements as well as the correlation between all measurement
errors. The proposed mechanistic error models are a foun-
dation to estimate soil moisture (co)variability based on soil
heterogeneity, more specifically on the variability in the vG
water retention curve in a direct approach (RC; Equation 4)
as well as based on a first-order approximation (RC-FO;
Equation 5). The error models result in covariance matri-
ces in function of mean soil moisture, from which one can
easily derive the measurement covariance matrix of measure-
ment time series in that field. To parametrize these models,
water retention analyses of multiple undisturbed soil cores are
required to know the variability in the vG retention curve.

In conclusion, with the proposed mechanistic error models,
we can better understand and interpret soil moisture sensor
data measured at fixed locations and soil moisture variability
resulting from soil heterogeneity. However, the mechanistic
error model tended to underestimate the variance and auto-
covariance. Further research is needed to evaluate the effect
of this underestimation on prediction uncertainty of models
that are calibrated using in situ soil moisture measurements.
In order to derive the autocovariance with a mechanistic error
model, water retention curves should be measured on a large
number of soil cores, and this should be done every year since
soil properties are dynamic. Further research is needed to
develop approaches that would either derive autocovariances
from direct soil moisture measurements or combine informa-
tion about measured variability with information about water
retention curves, which could also be inferred from other
proxies that are easier to measure or map. However, when
insufficient information about soil variability is available or
when the accuracy of the estimated covariance functions is
insufficient, then a covariance function that is a bivariate
function of average soil moisture contents could be tested
with hyperparameters that could be derived from deviations
between predictions by process models and observations. The
functional form of this covariance function could be based on
covariances that are estimated from the variability of retention
curves.
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